We investigated how the size of the horizontal field of view (FoV) affects visual speed perception with individuals running on a treadmill. Twelve moderately trained to trained participants ran on a treadmill at two different speeds (8 and 12 km/h) in front of a moving virtual scene. Different masks were used to manipulate the visible visual field, masking either the central or the peripheral area of the virtual scene or showing the full visual field. We asked participants to match the visual speed of the scene to their actual running speed. For each trial, participants indicated whether the scene was moving faster or slower than they were running. Visual speed was adjusted according to the responses using a staircase method until the Point of Subjective Equality was reached, that is until visual and running speed were perceived as matching. For both speeds and all FoV conditions, participants underestimated visual speed relative to the actual running speed. However, this underestimation was significant only when the peripheral FoV was masked. These results confirm that the size of the FoV should absolutely be taken into account for the design of treadmill-mediated virtual environments (VEs).
Influence of the Size of the Field of View on Visual Perception While Running in a Treadmill-Mediated Virtual Environment
Martina Caramenti;
2019
Abstract
We investigated how the size of the horizontal field of view (FoV) affects visual speed perception with individuals running on a treadmill. Twelve moderately trained to trained participants ran on a treadmill at two different speeds (8 and 12 km/h) in front of a moving virtual scene. Different masks were used to manipulate the visible visual field, masking either the central or the peripheral area of the virtual scene or showing the full visual field. We asked participants to match the visual speed of the scene to their actual running speed. For each trial, participants indicated whether the scene was moving faster or slower than they were running. Visual speed was adjusted according to the responses using a staircase method until the Point of Subjective Equality was reached, that is until visual and running speed were perceived as matching. For both speeds and all FoV conditions, participants underestimated visual speed relative to the actual running speed. However, this underestimation was significant only when the peripheral FoV was masked. These results confirm that the size of the FoV should absolutely be taken into account for the design of treadmill-mediated virtual environments (VEs).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.