Microphthalmia-associated transcription factor (MITF) is a member of MYC superfamily, associated with melanocyte cells, as it was discovered in depigmented mice. However, over the last years it was found to be involved in many cellular signaling pathways, among which oncogenesis, osteoclast differentiation, and stress response. In mammals, Mitf gene mutations can cause diverse syndromes affecting pigmentation of eyes or skin, bone defects and melanomas. As MITF protein homologs were also found in some invertebrates, we have isolated and characterized the MITF cDNAs from the sea urchin Paracentrotus lividus, referred to as Pl-Mitf. The in silico study of the secondary and tertiary structure of Pl-Mitf protein showed high conserved regions mostly lying in the DNA binding domain. To understand the degree of evolutionary conservation of MITF, a phylogenetic analysis was performed comparing the Pl-Mitf deduced protein with proteins from different animal species. Moreover, the analysis of temporal and spatial expression pattern of Pl-Mitf mRNA showed that it was expressed from the onset of gastrulation of the sea urchin embryo to the pluteus larva, specifically in primary mesenchymes cells (PMCs), the sea urchin skeletogenic cells, and in the forming archenteron, the larval gut precursor. In silico protein-protein interactions analysis was used to understand the association of MITF with other proteins. Our results put in evidence the conservation of the MITF protein among vertebrates and invertebrates and may provide new perspectives on the pathways underlying sea urchin development, even if further functional analyses are needed.

MITF: an evolutionarily conserved transcription factor in the sea urchin Paracentrotus lividus

Roberta Russo;Nadia Lampiasi;Francesca Zito
2019

Abstract

Microphthalmia-associated transcription factor (MITF) is a member of MYC superfamily, associated with melanocyte cells, as it was discovered in depigmented mice. However, over the last years it was found to be involved in many cellular signaling pathways, among which oncogenesis, osteoclast differentiation, and stress response. In mammals, Mitf gene mutations can cause diverse syndromes affecting pigmentation of eyes or skin, bone defects and melanomas. As MITF protein homologs were also found in some invertebrates, we have isolated and characterized the MITF cDNAs from the sea urchin Paracentrotus lividus, referred to as Pl-Mitf. The in silico study of the secondary and tertiary structure of Pl-Mitf protein showed high conserved regions mostly lying in the DNA binding domain. To understand the degree of evolutionary conservation of MITF, a phylogenetic analysis was performed comparing the Pl-Mitf deduced protein with proteins from different animal species. Moreover, the analysis of temporal and spatial expression pattern of Pl-Mitf mRNA showed that it was expressed from the onset of gastrulation of the sea urchin embryo to the pluteus larva, specifically in primary mesenchymes cells (PMCs), the sea urchin skeletogenic cells, and in the forming archenteron, the larval gut precursor. In silico protein-protein interactions analysis was used to understand the association of MITF with other proteins. Our results put in evidence the conservation of the MITF protein among vertebrates and invertebrates and may provide new perspectives on the pathways underlying sea urchin development, even if further functional analyses are needed.
2019
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
Development · Gene expression · Bioinformatics · Proteins interactions
mitf
File in questo prodotto:
File Dimensione Formato  
prod_408817-doc_144758.pdf

accesso aperto

Descrizione: MITF: an evolutionarily conserved transcription factor in the sea urchin Paracentrotus lividus
Tipologia: Versione Editoriale (PDF)
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact