We revisit simple algebraic VOF methods for advection of material interfaces based of the well established TVD paradigm. We show that greatly improved representation of contact discontinuities is obtained through use of a novel CFL-dependent limiter whereby the classical TVD bounds are exceeded. Perfectly crisp numerical interfaces are obtained with very limited numerical atomization (flotsam and jetsam) as compared to previous SLIC schemes. Comparison of the algorithm with accurate geometrical VOF shows larger error at given mesh resolution, but comparable efficiency when the reduced computational cost is accounted for.

On algebraic TVD-VOF methods for tracking material interfaces

Iafrati A
2019

Abstract

We revisit simple algebraic VOF methods for advection of material interfaces based of the well established TVD paradigm. We show that greatly improved representation of contact discontinuities is obtained through use of a novel CFL-dependent limiter whereby the classical TVD bounds are exceeded. Perfectly crisp numerical interfaces are obtained with very limited numerical atomization (flotsam and jetsam) as compared to previous SLIC schemes. Comparison of the algorithm with accurate geometrical VOF shows larger error at given mesh resolution, but comparable efficiency when the reduced computational cost is accounted for.
2019
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Volume of Fluids
multiphase flows
numerical methods
Computational fluid dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact