Trees and woodlands are nowadays threatened by variety of aggressive diseases and fungal infections. As a result, internal decays in trees, can lead to the creation of cavities and large holes inside the trunks, which in turn can seriously undermine the stability and the integrity of the tree. In this regard, ground-penetrating radar (GPR) has recently proven to be an effective non-destructive testing (NDT) method, with the potential of providing information about the internal structure of trees. However, the particular shape of tree trunks prevents the use of traditional data processing techniques, and only limited information can be collected for tree health assessment purposes. This study shows the potential of GPR enhanced by a microwave tomography inversion approach in detecting tree cavities and hollows. A hollow tree was investigated by performing a set of circular GPR scans, and the internal structure of the trunk was reconstructed via tomographic imaging. The achieved results were validated by way of comparison with real sections cut from the tree and prove the validity of the proposed methodology in identifying the dimension and shape of cavities and hollows in tree trunks.

Assessing the Internal Structure of Hollow Trees Using GPR and Microwave Tomography

Gennarelli G;Catapano I;Soldovieri F;
2020

Abstract

Trees and woodlands are nowadays threatened by variety of aggressive diseases and fungal infections. As a result, internal decays in trees, can lead to the creation of cavities and large holes inside the trunks, which in turn can seriously undermine the stability and the integrity of the tree. In this regard, ground-penetrating radar (GPR) has recently proven to be an effective non-destructive testing (NDT) method, with the potential of providing information about the internal structure of trees. However, the particular shape of tree trunks prevents the use of traditional data processing techniques, and only limited information can be collected for tree health assessment purposes. This study shows the potential of GPR enhanced by a microwave tomography inversion approach in detecting tree cavities and hollows. A hollow tree was investigated by performing a set of circular GPR scans, and the internal structure of the trunk was reconstructed via tomographic imaging. The achieved results were validated by way of comparison with real sections cut from the tree and prove the validity of the proposed methodology in identifying the dimension and shape of cavities and hollows in tree trunks.
2020
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Radar Imaging
Tree diagnostics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact