The emerging 2D perovskites exhibit superior stability and similar optoelectronic attributes compared to the 3D analogues, but their strong exciton-binding energy and inferior interlayer charge-transport reduce dramatically the device performance. Herein, we report a universal approach towards high-efficiency 2D perovskite solar cells (PSCs) by using the synergistic effect of NH4Cl and H2O to rotate the crystallographic orientation of 2D systems. The preferential adsorption of NH4Cl to the (202) crystal plane and the accelerated deprotonation of NH(4)(+)by H2O guide the crystal growth of the 2D framework towards vertical out-of-plane orientation, which strongly improves the 2D crystallinity, charge mobility, and carrier lifetime. As a representative, (PEA)(2)(MA)(3)Pb4I13-based PSCs (n <= 4) preparedviathe vertical-rotation process achieve a champion power conversion efficiency (PCE) of 17.03%, among the best PCEs reported for 2D PSCs. These findings offer a universal approach to rotate the orientation of 2D perovskites for efficient photovoltaics regardless of the perovskite composition.

Universal approach toward high-efficiency two-dimensional perovskite solar cellsviaa vertical-rotation process

Mahata Arup;De Angelis Filippo;
2020

Abstract

The emerging 2D perovskites exhibit superior stability and similar optoelectronic attributes compared to the 3D analogues, but their strong exciton-binding energy and inferior interlayer charge-transport reduce dramatically the device performance. Herein, we report a universal approach towards high-efficiency 2D perovskite solar cells (PSCs) by using the synergistic effect of NH4Cl and H2O to rotate the crystallographic orientation of 2D systems. The preferential adsorption of NH4Cl to the (202) crystal plane and the accelerated deprotonation of NH(4)(+)by H2O guide the crystal growth of the 2D framework towards vertical out-of-plane orientation, which strongly improves the 2D crystallinity, charge mobility, and carrier lifetime. As a representative, (PEA)(2)(MA)(3)Pb4I13-based PSCs (n <= 4) preparedviathe vertical-rotation process achieve a champion power conversion efficiency (PCE) of 17.03%, among the best PCEs reported for 2D PSCs. These findings offer a universal approach to rotate the orientation of 2D perovskites for efficient photovoltaics regardless of the perovskite composition.
2020
ORIENTATION
TRANSPORT
GROWTH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 89
social impact