A large part of the European building Heritage is dated back over centuries. Consequently, its structural and thermal performances are often inadequate. Commonly, different interventions are proposed for solving these issues separately. However, reasonable drawbacks arise when the structural retrofitting requires a direct contact with the target-member while the insulation layer is potentially interposed in between. In this scenario, the present research proposes a novel and unique system able to guarantee both the energetic and the structural retrofitting.Inorganic Matrix Composites(IMCs) are a promising solution in this sense. Among them, theFabric Reinforced Cementitous Matrix(FRCM) is one of the most used; or rather a composite made of a fabric (open grid or mesh) within an inorganic matrix (lime or cement based). Even if the inorganic matrix has a relevant thickness (if compared with the one of the fabric), its thermal resistance is insufficient. The novelty of this work consists in assessing a new geo-polymeric FRCM-system by combining fly-ash binder (reused material) and expanded glass aggregate (recycled material). Direct tensile tests, for measuring the tensile strength, ultimate strain and elastic modulus, were performed in addition to thermal conductivity tests. The results were compared with those of traditional FRCM (commercially available). The potentiality of the proposal for structural and energy retrofitting is discussed and examples of its possible application are also reported.
A New Fabric Reinforced Geopolymer Mortar (FRGM) with Mechanical and Energy Benefits
Cascardi Alessio;Lassandro Paola;
2020
Abstract
A large part of the European building Heritage is dated back over centuries. Consequently, its structural and thermal performances are often inadequate. Commonly, different interventions are proposed for solving these issues separately. However, reasonable drawbacks arise when the structural retrofitting requires a direct contact with the target-member while the insulation layer is potentially interposed in between. In this scenario, the present research proposes a novel and unique system able to guarantee both the energetic and the structural retrofitting.Inorganic Matrix Composites(IMCs) are a promising solution in this sense. Among them, theFabric Reinforced Cementitous Matrix(FRCM) is one of the most used; or rather a composite made of a fabric (open grid or mesh) within an inorganic matrix (lime or cement based). Even if the inorganic matrix has a relevant thickness (if compared with the one of the fabric), its thermal resistance is insufficient. The novelty of this work consists in assessing a new geo-polymeric FRCM-system by combining fly-ash binder (reused material) and expanded glass aggregate (recycled material). Direct tensile tests, for measuring the tensile strength, ultimate strain and elastic modulus, were performed in addition to thermal conductivity tests. The results were compared with those of traditional FRCM (commercially available). The potentiality of the proposal for structural and energy retrofitting is discussed and examples of its possible application are also reported.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.