Human p21(Waf1) protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21(Waf1) protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21(Waf1) on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21(Waf1) degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21(Waf1) at any dose of damage. We also found that p21(Waf1) ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21(Waf1) protein levels in relation to cytostatic and cytotoxic doses of DNA damage.

Bimodal regulation of p21(waf1) protein as function of DNA damage levels

Buscemi G;Zannini L;
2014

Abstract

Human p21(Waf1) protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21(Waf1) protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21(Waf1) on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21(Waf1) degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21(Waf1) at any dose of damage. We also found that p21(Waf1) ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21(Waf1) protein levels in relation to cytostatic and cytotoxic doses of DNA damage.
2014
apoptosis
cell survival
DNA damage response
double strand breaks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 21
social impact