Background and Aims By the year 2100, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ~200 ppm since the Neogene, beginning ~24 Myr ago. Changing [CO2]a affects plant carbon-water balance, with implications for growth, drought tolerance and vegetation shifts. The evolution of C4 photosynthesis improved plant hydraulic function under low [CO2]a and preluded the establishment of savannahs, characterized by rapid transitions between open C4-dominated grassland with scattered trees and closed forest. Understanding directional vegetation trends in response to environmental change will require modelling. But models are often parameterized with characteristics observed in plants under current climatic conditions, necessitating experimental quantification of the mechanistic underpinnings of plant acclimation to [CO2]a. Methods We measured growth, photosynthesis and plant-water relations, within wetting-drying cycles, of a C3 tree (Vachellia karroo, an acacia) and a C4 grass (Eragrostis curvula) grown at 200, 400 or 800 ppm [CO2]a. We investigated the mechanistic linkages between trait responses to [CO2]a under moderate soil drying, and photosynthetic characteristics. Key results For V. karroo, higher [CO2]a increased assimilation, foliar carbon:nitrogen, biomass and leaf starch, but decreased stomatal conductance and root starch. For Eragrostis, higher [CO2]a decreased C:N, did not affect assimilation, biomass or starch, and markedly decreased stomatal conductance. Together, this meant that C4 advantages in efficient water-use over the tree were maintained with rising [CO2]a. Conclusions Acacia and Eragrostis acclimated differently to [CO2]a, with implications for their respective responses to water limitation and environmental change. Our findings question the carbon-centric focus on factors limiting assimilation with changing [CO2]a, how they are predicted and their role in determining productivity. We emphasize the continuing importance of water-conserving strategies in the assimilation response of savannah plants to rising [CO2]a.

Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2

2019

Abstract

Background and Aims By the year 2100, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ~200 ppm since the Neogene, beginning ~24 Myr ago. Changing [CO2]a affects plant carbon-water balance, with implications for growth, drought tolerance and vegetation shifts. The evolution of C4 photosynthesis improved plant hydraulic function under low [CO2]a and preluded the establishment of savannahs, characterized by rapid transitions between open C4-dominated grassland with scattered trees and closed forest. Understanding directional vegetation trends in response to environmental change will require modelling. But models are often parameterized with characteristics observed in plants under current climatic conditions, necessitating experimental quantification of the mechanistic underpinnings of plant acclimation to [CO2]a. Methods We measured growth, photosynthesis and plant-water relations, within wetting-drying cycles, of a C3 tree (Vachellia karroo, an acacia) and a C4 grass (Eragrostis curvula) grown at 200, 400 or 800 ppm [CO2]a. We investigated the mechanistic linkages between trait responses to [CO2]a under moderate soil drying, and photosynthetic characteristics. Key results For V. karroo, higher [CO2]a increased assimilation, foliar carbon:nitrogen, biomass and leaf starch, but decreased stomatal conductance and root starch. For Eragrostis, higher [CO2]a decreased C:N, did not affect assimilation, biomass or starch, and markedly decreased stomatal conductance. Together, this meant that C4 advantages in efficient water-use over the tree were maintained with rising [CO2]a. Conclusions Acacia and Eragrostis acclimated differently to [CO2]a, with implications for their respective responses to water limitation and environmental change. Our findings question the carbon-centric focus on factors limiting assimilation with changing [CO2]a, how they are predicted and their role in determining productivity. We emphasize the continuing importance of water-conserving strategies in the assimilation response of savannah plants to rising [CO2]a.
2019
Istituto per la Valorizzazione del Legno e delle Specie Arboree - IVALSA - Sede Sesto Fiorentino
Acacia
Vachellia karroo
Eragrostis curvula
C4 photosynthesis
elevated CO2
global change
hydraulics
low CO2
savannah
starch
stomata
thorns
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact