The use of ultra-short laser pulses to pump and probe materials activates a wealth of processes which involve the coherent and non coherent dynamics of interacting electrons out of equilibrium. Non equilibrium (NEQ) many body perturbation theory (MBPT) offers an equation of motion for the density- matrix of the system which well describes both coherent and non coherent processes. In the non correlated case there is a clear relation between these two regimes and the matrix elements of the density-matrix. The same is not true for the correlated case, where the potential binding of electrons and holes in excitonic states need to be considered. In the present work we discuss how NEQ-MBPT can be used to describe the dynamics of both coherent and non-coherent excitons in the low density regime. The approach presented is well suited for an ab initio implementation.

An ab-initio approach to describe coherent and non-coherent exciton dynamics

Sangalli Davide;Perfetto Enrico;Marini Andrea
2018

Abstract

The use of ultra-short laser pulses to pump and probe materials activates a wealth of processes which involve the coherent and non coherent dynamics of interacting electrons out of equilibrium. Non equilibrium (NEQ) many body perturbation theory (MBPT) offers an equation of motion for the density- matrix of the system which well describes both coherent and non coherent processes. In the non correlated case there is a clear relation between these two regimes and the matrix elements of the density-matrix. The same is not true for the correlated case, where the potential binding of electrons and holes in excitonic states need to be considered. In the present work we discuss how NEQ-MBPT can be used to describe the dynamics of both coherent and non-coherent excitons in the low density regime. The approach presented is well suited for an ab initio implementation.
2018
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
exciton
nonequilibrium
abinitio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact