The speciation of potentially toxic elements (PTE) in bottom ashes from municipal solid waste incineration (MSWI) and their relationship with grain size is investigated. The proposed enrichment of several potential toxic elements in lower sized grains is discussed, comparing the literature and new data on Parma's waste incinerator. Results from X-ray fluorescence spectrometry (XRF), SEM-EDS, and XRD analyses on different grain size show (1) a positive Si-trend, correlated with grain size and few lithophile elements, such as Zr and Rb. In Parma, Al, K, Mg, and Fe also correlate with Si for the portion below 2 mm; (2) a Ca-trend, with a strong negative correlation with Si and a positive correlation with loss on ignition (LOI), S, Cl, Ti, Zn, Pb, and Sn. Mineralogical composition shows a little change in grain size, as in previous investigations, but with substantial differences in amorphous content. SEM-EDS analysis shows that the amorphous portion is highly heterogeneous, with portions coming from melting during incineration, residual glass, and unburnt loss on ignition (LOI). The above results show that PTE elements are either present as metals (such as Cu and Ni, or Zn, Pb and Sn) in carbonate, sulfate, and amorphous residual LOI portions.
Particle size and potential toxic element speciation in municipal solid waste incineration (Mswi) bottom ash
Mantovani L;Funari V
2021
Abstract
The speciation of potentially toxic elements (PTE) in bottom ashes from municipal solid waste incineration (MSWI) and their relationship with grain size is investigated. The proposed enrichment of several potential toxic elements in lower sized grains is discussed, comparing the literature and new data on Parma's waste incinerator. Results from X-ray fluorescence spectrometry (XRF), SEM-EDS, and XRD analyses on different grain size show (1) a positive Si-trend, correlated with grain size and few lithophile elements, such as Zr and Rb. In Parma, Al, K, Mg, and Fe also correlate with Si for the portion below 2 mm; (2) a Ca-trend, with a strong negative correlation with Si and a positive correlation with loss on ignition (LOI), S, Cl, Ti, Zn, Pb, and Sn. Mineralogical composition shows a little change in grain size, as in previous investigations, but with substantial differences in amorphous content. SEM-EDS analysis shows that the amorphous portion is highly heterogeneous, with portions coming from melting during incineration, residual glass, and unburnt loss on ignition (LOI). The above results show that PTE elements are either present as metals (such as Cu and Ni, or Zn, Pb and Sn) in carbonate, sulfate, and amorphous residual LOI portions.File | Dimensione | Formato | |
---|---|---|---|
prod_451994-doc_167038.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
876.88 kB
Formato
Adobe PDF
|
876.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.