Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © 2017 The Author.

Light Sheet Fluorescence Microscopy Quantifies Calcium Oscillations in Root Hairs of Arabidopsis thaliana

Costa;
2017

Abstract

Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © 2017 The Author.
2017
Istituto di Biofisica - IBF
calmodulin
hybrid protein
photoprotein
YCaM3.6 protein
Arabidopsis
calcium signaling
cytology
cytosol
fluorescence microscopy
growth
development and aging
metabolism
physiology
plant root
procedures
Arabidopsis
Calcium Signaling
Calmodulin
Cytosol
Luminescent Proteins
Microscopy
Fluorescence
Plant Roots
Recombinant Fusion Proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 46
social impact