In this work, we present a comprehensive investigation of impurities contamination in silicon during UV Nanosecond Laser Annealing at high energy density. By investigating in detail the impact of the annealing ambient and of the surface preparation prior to UV-NLA (including the variation of the surface oxide thickness), we show that the observed oxygen penetration originates from the surface oxide layer. It is proposed that, at high energy UV-NLA, the prolonged contact of SiO2 with high temperature liquid Si induces a partial degradation of the SiO2/Si interface, leading to bond breaking and subsequent injection of O atoms into the substrate. A degradation involving less than 5% of the O atoms contained in the 1st SiO2 mono-layer is sufficient to account for the measured amount of in-diffused O in all of the analysed samples.

Investigation of oxygen penetration during UV nanosecond laser annealing of silicon at high energy densities

Boninelli S.;La Magna A.;
2021

Abstract

In this work, we present a comprehensive investigation of impurities contamination in silicon during UV Nanosecond Laser Annealing at high energy density. By investigating in detail the impact of the annealing ambient and of the surface preparation prior to UV-NLA (including the variation of the surface oxide thickness), we show that the observed oxygen penetration originates from the surface oxide layer. It is proposed that, at high energy UV-NLA, the prolonged contact of SiO2 with high temperature liquid Si induces a partial degradation of the SiO2/Si interface, leading to bond breaking and subsequent injection of O atoms into the substrate. A degradation involving less than 5% of the O atoms contained in the 1st SiO2 mono-layer is sufficient to account for the measured amount of in-diffused O in all of the analysed samples.
2021
Istituto per la Microelettronica e Microsistemi - IMM
Melt laser annealing, Impurities, Defects, SIMS, FTIS, Photoluminescence
File in questo prodotto:
File Dimensione Formato  
Monflier Appl. Surf. Sc 2021.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact