The germination timing of seeds is of the utmost adaptive importance for plant populations. Light is one of the best characterized factors promoting seed germination in several species. The germination is also finely regulated by changes in hormones levels, mainly those of gibberellin (GA) and abscisic acid (ABA). Here, we performed physiological, pharmacological, and molecular analyses to uncover the role of ATHB2, an HD-ZIP II transcription factor, in germination of Arabidopsis seeds. Our study demonstrated that ATHB2 is a negative regulator and sustains the expression of transcription factors to block germination promoted by light. Besides, we found that ATHB2 increases ABA sensitivity. Moreover, ABA and auxin content in athb2-2 mutant is higher than wild-type in dry seeds, but the differences disappeared during the imbibition in darkness and the first hours of exposition to light, respectively. Some ABA and light transcription factors are up-regulated by ATHB2, such as ABI5, ABI3, XERICO, SOMNUS and PIL5/PIF1. In opposition, PIN7, an auxin transport, is down-regulated. The role of ATHB2 as a repressor of germination induced by light affecting the gemination timing, could have differential effects on the establishment of seedlings altering the competitiveness between crops and weeds in the field

ATHB2 is a negative regulator of germination in Arabidopsis thaliana seeds

Monica Carabelli
Secondo
Membro del Collaboration Group
;
Ida Ruberti
Supervision
;
2021

Abstract

The germination timing of seeds is of the utmost adaptive importance for plant populations. Light is one of the best characterized factors promoting seed germination in several species. The germination is also finely regulated by changes in hormones levels, mainly those of gibberellin (GA) and abscisic acid (ABA). Here, we performed physiological, pharmacological, and molecular analyses to uncover the role of ATHB2, an HD-ZIP II transcription factor, in germination of Arabidopsis seeds. Our study demonstrated that ATHB2 is a negative regulator and sustains the expression of transcription factors to block germination promoted by light. Besides, we found that ATHB2 increases ABA sensitivity. Moreover, ABA and auxin content in athb2-2 mutant is higher than wild-type in dry seeds, but the differences disappeared during the imbibition in darkness and the first hours of exposition to light, respectively. Some ABA and light transcription factors are up-regulated by ATHB2, such as ABI5, ABI3, XERICO, SOMNUS and PIL5/PIF1. In opposition, PIN7, an auxin transport, is down-regulated. The role of ATHB2 as a repressor of germination induced by light affecting the gemination timing, could have differential effects on the establishment of seedlings altering the competitiveness between crops and weeds in the field
2021
Istituto di Biologia e Patologia Molecolari - IBPM
Arabidopsis
germination
HD-Zip
File in questo prodotto:
File Dimensione Formato  
prod_456164-doc_176489.pdf

accesso aperto

Descrizione: ATHB2 is a negative regulator of seed germination in Arabidopsis thaliana
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact