Emotions play an important role in our everyday life, influencing our decision-making process, and also affecting our physiology. Several studies in literature have proposed successful classification models for emotion recognition combining multimodal physiological measures without dwelling on the physiological significance of the measures. Our study aims at finding cardiovascular indices related to the autonomic nervous system that can explain how autonomic control of the heart responds with respect to specific emotions: happiness, fear, relaxation and boredom. Pulse arrival time and pulse pressure measurements have been shown to be significantly separating the 4 emotions, especially along the arousal dimension as expected from previous findings. Importantly, these blood pressure related indices also yielded relevant insights into characterizing the valence dimension when looking at high and low arousal subsets. In addition, these measures were found to be correlated with classical autonomic indices and explanatory in the cardiovascular and autonomic changes elicited by different emotions. Autonomic indices were then used to train a basic support vector machine model obtaining four-class test accuracy in discriminating happiness, relaxation, boredom and fear equal to 44%, 67%, 55%, 44% respectively.

Analysis of the effect of emotion elicitation on the cardiovascular system

Zanet M;Paglialonga A;
2021

Abstract

Emotions play an important role in our everyday life, influencing our decision-making process, and also affecting our physiology. Several studies in literature have proposed successful classification models for emotion recognition combining multimodal physiological measures without dwelling on the physiological significance of the measures. Our study aims at finding cardiovascular indices related to the autonomic nervous system that can explain how autonomic control of the heart responds with respect to specific emotions: happiness, fear, relaxation and boredom. Pulse arrival time and pulse pressure measurements have been shown to be significantly separating the 4 emotions, especially along the arousal dimension as expected from previous findings. Importantly, these blood pressure related indices also yielded relevant insights into characterizing the valence dimension when looking at high and low arousal subsets. In addition, these measures were found to be correlated with classical autonomic indices and explanatory in the cardiovascular and autonomic changes elicited by different emotions. Autonomic indices were then used to train a basic support vector machine model obtaining four-class test accuracy in discriminating happiness, relaxation, boredom and fear equal to 44%, 67%, 55%, 44% respectively.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
physiological sygnals
emotion recognition
cardiovascular measures
heart rate
heart rate variability
galvanic skin response
electrodermal activity
feature selection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact