In the present study, we successfully synthesized N-doped carbon quantum dots (N-CQDs) using a top-down approach, i.e., hydroxyl radical opening of fullerene with hydrogen peroxide, in basic ambient using ammonia for two different reaction times. The ensuing characterization via dynamic light scattering, SEM, and IR spectroscopy revealed a size control that was dependent on the reaction time, as well as a more pronounced -NH2 functionalization. The N-CQDs were probed for metal ion detection in aqueous solutions and during bioimaging and displayed a Cr3+ and Cu2+ selectivity shift at a higher degree of -NH2 functionalization, as well as HEK-293 cell nuclei marking.

Top-Down N-Doped Carbon Quantum Dots for Multiple Purposes: Heavy Metal Detection and Intracellular Fluorescence

Elvira Maria Bauer
Secondo
Writing – Original Draft Preparation
;
2021

Abstract

In the present study, we successfully synthesized N-doped carbon quantum dots (N-CQDs) using a top-down approach, i.e., hydroxyl radical opening of fullerene with hydrogen peroxide, in basic ambient using ammonia for two different reaction times. The ensuing characterization via dynamic light scattering, SEM, and IR spectroscopy revealed a size control that was dependent on the reaction time, as well as a more pronounced -NH2 functionalization. The N-CQDs were probed for metal ion detection in aqueous solutions and during bioimaging and displayed a Cr3+ and Cu2+ selectivity shift at a higher degree of -NH2 functionalization, as well as HEK-293 cell nuclei marking.
2021
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
fullerene
carbon quantum dots
heavy metals
photoluminescence
bioimaging
quenching
spectroscopy
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-02249.pdf

accesso aperto

Descrizione: Top-down N-doped carbon quantum dots for multiple purposes: heavy metal detection and intracellular fluorescence
Licenza: Creative commons
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 45
social impact