Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.
Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis
Fornasiero P;
2021
Abstract
Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.File | Dimensione | Formato | |
---|---|---|---|
prod_452187-doc_168490.pdf
accesso aperto
Descrizione: Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.