Microplastics have recently been discovered as remarkable contaminants of all environmental matrices. Their quantification and characterisation require lengthy and laborious analytical procedures that make this aspect of microplastics research a critical issue. In light of this, in this work, we developed a Computer Vision and Machine-Learning-based system able to count and classify microplastics quickly and automatically in four morphology and size categories, avoiding manual steps. Firstly, an early machine learning algorithm was created to count and classify microplastics. Secondly, a supervised (k-nearest neighbours) and an unsupervised classification were developed to determine microplastic quantities and properties and discover hidden information. The machine learning algorithm showed promising results regarding the counting process and classification in sizes; it needs further improvements in visual class classification. Similarly, the supervised classification demonstrated satisfactory results with accuracy always greater than 0.9. On the other hand, the unsupervised classification discovered the probable underestimation of some microplastic shape categories due to the sampling methodology used, resulting in a useful tool for bringing out non-detectable information by traditional research approaches adopted in microplastic studies. In conclusion, the proposed application offers a reliable automated approach for microplastic quantification based on counts of particles captured in a picture, size distribution, and morphology, with considerable prospects in method standardisation.

A Handy Open-Source Application Based on Computer Vision and Machine Learning Algorithms to Count and Classify Microplastics

Carmine Massarelli;Claudia Campanale;Vito Felice Uricchio
2021

Abstract

Microplastics have recently been discovered as remarkable contaminants of all environmental matrices. Their quantification and characterisation require lengthy and laborious analytical procedures that make this aspect of microplastics research a critical issue. In light of this, in this work, we developed a Computer Vision and Machine-Learning-based system able to count and classify microplastics quickly and automatically in four morphology and size categories, avoiding manual steps. Firstly, an early machine learning algorithm was created to count and classify microplastics. Secondly, a supervised (k-nearest neighbours) and an unsupervised classification were developed to determine microplastic quantities and properties and discover hidden information. The machine learning algorithm showed promising results regarding the counting process and classification in sizes; it needs further improvements in visual class classification. Similarly, the supervised classification demonstrated satisfactory results with accuracy always greater than 0.9. On the other hand, the unsupervised classification discovered the probable underestimation of some microplastic shape categories due to the sampling methodology used, resulting in a useful tool for bringing out non-detectable information by traditional research approaches adopted in microplastic studies. In conclusion, the proposed application offers a reliable automated approach for microplastic quantification based on counts of particles captured in a picture, size distribution, and morphology, with considerable prospects in method standardisation.
2021
Istituto di Ricerca Sulle Acque - IRSA
microplastics; computer vision; machine learning; automatic; quantification; classification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact