Blocking the interaction between the apoptosis-inducing factor (AIF) and cyclophilin A (CypA) by the AIF fragment AIF(370-394) is protective against glutamate-induced neuronal cell death and brain injury in mice. Starting from AIF(370-394), we report the generation of the disulfide-bridged and shorter variant AIF(381-389) and its structural characterization by nuclear magnetic resonance (NMR) in the free and CypA-bound state. AIF(381-389) in both the free and bound states assumes a ?-hairpin conformation similar to that of the fragment in the AIF protein and shows a highly reduced conformational flexibility. This peptide displays a similar in vitro affinity for CypA, an improved antiapoptotic activity in cells and an enhanced proteolytic stability compared to the parent peptide. The NMR-based 3D model of the AIF(381-389)/CypA complex provides a better understanding of the binding hot spots on both the peptide and the protein and can be exploited to design AIF/CypA inhibitors with improved pharmacokinetic and pharmacodynamics features.

Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death

Mascanzoni Fabiola;Caporale Andrea;Ruvo Menotti;Doti Nunzianna
2021

Abstract

Blocking the interaction between the apoptosis-inducing factor (AIF) and cyclophilin A (CypA) by the AIF fragment AIF(370-394) is protective against glutamate-induced neuronal cell death and brain injury in mice. Starting from AIF(370-394), we report the generation of the disulfide-bridged and shorter variant AIF(381-389) and its structural characterization by nuclear magnetic resonance (NMR) in the free and CypA-bound state. AIF(381-389) in both the free and bound states assumes a ?-hairpin conformation similar to that of the fragment in the AIF protein and shows a highly reduced conformational flexibility. This peptide displays a similar in vitro affinity for CypA, an improved antiapoptotic activity in cells and an enhanced proteolytic stability compared to the parent peptide. The NMR-based 3D model of the AIF(381-389)/CypA complex provides a better understanding of the binding hot spots on both the peptide and the protein and can be exploited to design AIF/CypA inhibitors with improved pharmacokinetic and pharmacodynamics features.
2021
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Apoptosis Inducing Factor,
Human AIFM1 Protein,
Flavoproteins
File in questo prodotto:
File Dimensione Formato  
russo-et-al-2021-design-optimization-and-structural-characterization-of-an-apoptosis-inducing-factor-peptide-targeting.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 7.84 MB
Formato Adobe PDF
7.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact