This study is the first study on the compressive and tensile stress-strain revealing the deformation anisotropy among laser powder bed fusion NiTi parts fabricated with the same process conditions. We investigated the effects of building orientation on the microstructure and the resulting shape memory properties. To this end, three orientations were selected, namely 0, 45, and 90-degree, measured from the build plate and fabricated with the same process parameters. A strong (001) texture was formed along the building direction for all of the samples; a different texture could however be observed along the loading direction (LD). Samples fabricated with 45-degree showed a texture of (110) along the LD, as confirmed through X-ray diffraction and backscattered diffraction while 0 and 90 samples still had the (001) texture along with the LD. These texture variations created anisotropic compression-tension behaviors with deformation patterns consistent with single crystals. The (001) -textured parts showed higher strength and lower transformation strain (2.87% @ 200 MPa in tension for 0 ?) while the (110) samples showed higher transformation strain at lower stresses (5.31% @ 150 MPa in tension for 45 ?).

Building orientation-structure-property in laser powder bed fusion of NiTi shape memory alloy

Bassani P;Biffi C;Tuissi A;
2021

Abstract

This study is the first study on the compressive and tensile stress-strain revealing the deformation anisotropy among laser powder bed fusion NiTi parts fabricated with the same process conditions. We investigated the effects of building orientation on the microstructure and the resulting shape memory properties. To this end, three orientations were selected, namely 0, 45, and 90-degree, measured from the build plate and fabricated with the same process parameters. A strong (001) texture was formed along the building direction for all of the samples; a different texture could however be observed along the loading direction (LD). Samples fabricated with 45-degree showed a texture of (110) along the LD, as confirmed through X-ray diffraction and backscattered diffraction while 0 and 90 samples still had the (001) texture along with the LD. These texture variations created anisotropic compression-tension behaviors with deformation patterns consistent with single crystals. The (001) -textured parts showed higher strength and lower transformation strain (2.87% @ 200 MPa in tension for 0 ?) while the (110) samples showed higher transformation strain at lower stresses (5.31% @ 150 MPa in tension for 45 ?).
2021
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Additive manufacturing
Build orientation
LPBF
Shape memory alloy
Texture
Thermomechanical behavior
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? ND
social impact