In high energy physics experiments, calorimeters are calibrated to produce precise and accurate results. Laser light can be used for calibration when the detectors are sensitive to photons in that particular energy range, which is often the case. Moreover, it is not unusual that detection systems consist of hundreds of channels that have to be calibrated independently, which produce stringent requirements on the light distribution system in terms of temporal and spatial stability, energy distribution and timing. Furthermore, the economic factor and the ease of production have to be taken into account. We present a prototype light distribution system, based on a series of optical beamsplitters, developed for the Muon g-2 experiment at Fermilab.

An approach to light distribution for the calibration of high energy physics calorimeters

Ferrari C;Fioretti A;Gabbanini C;
2020

Abstract

In high energy physics experiments, calorimeters are calibrated to produce precise and accurate results. Laser light can be used for calibration when the detectors are sensitive to photons in that particular energy range, which is often the case. Moreover, it is not unusual that detection systems consist of hundreds of channels that have to be calibrated independently, which produce stringent requirements on the light distribution system in terms of temporal and spatial stability, energy distribution and timing. Furthermore, the economic factor and the ease of production have to be taken into account. We present a prototype light distribution system, based on a series of optical beamsplitters, developed for the Muon g-2 experiment at Fermilab.
2020
Istituto Nazionale di Ottica - INO
Optics; Detector alignment and calibration methods (lasers
sources
particle-beams); Cherenkov detectors
File in questo prodotto:
File Dimensione Formato  
prod_457503-doc_177542.pdf

solo utenti autorizzati

Descrizione: An approach to light distribution for the calibration of high energy physics calorimeters
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 12 MB
Formato Adobe PDF
12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact