One of the main revolutionary features of 5G networks is the ultra-low latency that will enable new services such as those for the future smart vehicles. The 5G technology will be able to support extreme-low latency thanks to new technologies and the wide flexible architecture that integrates new spectra and access technologies. In particular, visible light communication (VLC) is envisaged as a very promising technology for vehicular communications, since the information provided can flow by using the lights (as traffic-lights and car lights). This paper describes one of the first experiments on the joint use of 5G and VLC networks to provide real-time information to cars. The applications span from road safety to emergency alarm.

Experimental measurements of a joint 5G-VLC communication for future vehicular networks

Seminara M;Catani J
2020

Abstract

One of the main revolutionary features of 5G networks is the ultra-low latency that will enable new services such as those for the future smart vehicles. The 5G technology will be able to support extreme-low latency thanks to new technologies and the wide flexible architecture that integrates new spectra and access technologies. In particular, visible light communication (VLC) is envisaged as a very promising technology for vehicular communications, since the information provided can flow by using the lights (as traffic-lights and car lights). This paper describes one of the first experiments on the joint use of 5G and VLC networks to provide real-time information to cars. The applications span from road safety to emergency alarm.
2020
Istituto Nazionale di Ottica - INO
visible light communications; 5G networks; smart vehicles; field trials
File in questo prodotto:
File Dimensione Formato  
prod_457505-doc_177544.pdf

accesso aperto

Descrizione: Experimental measurements of a joint 5G-VLC communication for future vehicular networks
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact