Antimicrobial resistance has become one of the major global public health concerns, and it is indispensable to search for alternatives to conventional antibiotics. Recently, antimicrobial peptides have received great attention because of their broad-spectrum antimicrobial activity at relatively low concentrations, even against pathogens such as Salmonella enterica, which is responsible for most foodborne illnesses. This work aimed at evaluating the antimicrobial and antibiofilm activity of the innate defense peptide, named 1018-K6, against S. enterica. A total of 42 strains, belonging to three different subspecies and 32 serotypes, were included in this study. The antibiotic resistance profile of all the strains and the cytotoxic effects of 1018-K6 on mammalian fibroblast cells were also investigated. Results revealed that MIC (minimum inhibitory concentrations) and MBC (minimum bactericidal concentrations) values were in the ranges of 8-64 g/mL and 16-128 g/mL, respectively, although most strains (97%) showed MICs between 16 and 32 g/mL. Moreover, sub-inhibitory concentrations of 1018-K6 strongly reduced the biofilm formation in several S. enterica strains, whatever the initial inoculum size. Our results demonstrated that 1018-K6 is able to control and manage S. enterica growth with a large potential for applications in the fields of active packaging and water disinfectants.

A Study on the Antimicrobial and Antibiofilm Peptide 1018-K6 as Potential Alternative to Antibiotics against Food-Pathogen Salmonella enterica

Gianna Palmier;
2021

Abstract

Antimicrobial resistance has become one of the major global public health concerns, and it is indispensable to search for alternatives to conventional antibiotics. Recently, antimicrobial peptides have received great attention because of their broad-spectrum antimicrobial activity at relatively low concentrations, even against pathogens such as Salmonella enterica, which is responsible for most foodborne illnesses. This work aimed at evaluating the antimicrobial and antibiofilm activity of the innate defense peptide, named 1018-K6, against S. enterica. A total of 42 strains, belonging to three different subspecies and 32 serotypes, were included in this study. The antibiotic resistance profile of all the strains and the cytotoxic effects of 1018-K6 on mammalian fibroblast cells were also investigated. Results revealed that MIC (minimum inhibitory concentrations) and MBC (minimum bactericidal concentrations) values were in the ranges of 8-64 g/mL and 16-128 g/mL, respectively, although most strains (97%) showed MICs between 16 and 32 g/mL. Moreover, sub-inhibitory concentrations of 1018-K6 strongly reduced the biofilm formation in several S. enterica strains, whatever the initial inoculum size. Our results demonstrated that 1018-K6 is able to control and manage S. enterica growth with a large potential for applications in the fields of active packaging and water disinfectants.
2021
Istituto di Bioscienze e Biorisorse
antimicrobial peptide; Salmonella; food-borne pathogen; biofilm; 1018-k16; food preservatives
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact