The recent cost-driven transition from silver- to copper-based inks for printing on flexible substrates is connected with new key challenges. Given the high oxidation sensitivity of copper inks before, during, and after the curing process, the conductivity and thereby the device performance can be affected. Strategies to limit or even avoid this drawback include the development of metal organic decomposition (MOD) inks with selected "protective" ligands. In this study, the influence of the ligand on the oxide formation during the ink decomposition process is described using a wide variety of in situ characterization techniques. It is demonstrated that bidentate ligands provide an improved oxidation barrier, although the copper preservation mechanism has its limits: oxygen can interfere in every reduction pathway depending on the curing duration and atmospheric conditions. The generated insights can be applied in the further evolution toward ambient-curable copper MOD inks.

Effectiveness of Ligand Denticity-Dependent Oxidation Protection in Copper MOD Inks

Longo A;
2019

Abstract

The recent cost-driven transition from silver- to copper-based inks for printing on flexible substrates is connected with new key challenges. Given the high oxidation sensitivity of copper inks before, during, and after the curing process, the conductivity and thereby the device performance can be affected. Strategies to limit or even avoid this drawback include the development of metal organic decomposition (MOD) inks with selected "protective" ligands. In this study, the influence of the ligand on the oxide formation during the ink decomposition process is described using a wide variety of in situ characterization techniques. It is demonstrated that bidentate ligands provide an improved oxidation barrier, although the copper preservation mechanism has its limits: oxygen can interfere in every reduction pathway depending on the curing duration and atmospheric conditions. The generated insights can be applied in the further evolution toward ambient-curable copper MOD inks.
2019
EXAFS
INK
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact