Design criteria of low-cost, dual-concentric metasurface possessing wideband phase gradient (PG) are introduced. The radar cross-section reduction (RCSR) is explained by anomalous reflection that characterizes the superficial planar. The geometry consists of two single band RCSR modulated surfaces (MSs) that are triggered in each other. Each MS is built-up of square patch (SP) unit cells configured as a modulation structure to realize PG that causes anomalous reflection and monostatic RCSR behavior. Applying sinusoidal modulation to the sequence of the SP unit cells leads to the formation of PG along the surface and hence the intensity of the reflected wave is reduced for the broadside direction (? = 0). The proposed structure fabricated on a 0.8 mm thin FR-4 substrate extends over 249 × 249 mm. It achieves a wide RCSR bandwidth from 20.9 GHz to 45.7 GHz (i.e., relative bandwidth of 75%) as designed in Dassault Systèmes (CST) Microwave Studio as a full-wave simulator and confirmed by the measurement results.

Low-cost, low-profile wide-band radar cross section reduction using dual-concentric phase gradient modulated surface

Matekovits Ladislau
2021

Abstract

Design criteria of low-cost, dual-concentric metasurface possessing wideband phase gradient (PG) are introduced. The radar cross-section reduction (RCSR) is explained by anomalous reflection that characterizes the superficial planar. The geometry consists of two single band RCSR modulated surfaces (MSs) that are triggered in each other. Each MS is built-up of square patch (SP) unit cells configured as a modulation structure to realize PG that causes anomalous reflection and monostatic RCSR behavior. Applying sinusoidal modulation to the sequence of the SP unit cells leads to the formation of PG along the surface and hence the intensity of the reflected wave is reduced for the broadside direction (? = 0). The proposed structure fabricated on a 0.8 mm thin FR-4 substrate extends over 249 × 249 mm. It achieves a wide RCSR bandwidth from 20.9 GHz to 45.7 GHz (i.e., relative bandwidth of 75%) as designed in Dassault Systèmes (CST) Microwave Studio as a full-wave simulator and confirmed by the measurement results.
2021
Modulated surface
Phase gradient
Radar cross section reduction
Square patch unit cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact