Acid mine drainage (AMD) is a common environmental problem in many sulphide mines worldwide, and it is widely accepted that the microbial community plays a major role in keeping the process of acid generation active. The aim of this work is to describe, for the first time, the microbial community thriving in goethite and jarosite Fe precipitates from the AMD of the Libiola mine. The observed association is dominated by Proteobacteria (>50%), followed by Bacteroidetes (22.75%), Actinobacteria (7.13%), Acidobacteria (5.79%), Firmicutes (2.56%), and Nitrospirae (1.88%). Primary producers seem to be limited to macroalgae, with chemiolithotrophic strains being almost absent. A phylogenetic analysis of bacterial sequences highlighted the presence of heterotrophic bacteria, including genera actively involved in the AMD Fe cycle and genera (such as Cytophaga and Flavobacterium) that are able to reduce cellulose. The Fe precipitates constitute a microaerobic and complex environment in which many ecological niches are present, as proved by the wide range of bacterial species observed. This study is the first attempt to quantitatively characterize the microbial community of the studied area and constitutes a starting point to learn more about the microorganisms thriving in the AMD of the Libiola mine, as well as their potential applications.

16S rRNA Gene-Based Profiling of the Microbial Community in an Acid Mine Drainage Fe Precipitate at Libiola Mine (Liguria, Italy)

GHIGNONE, STEFANO
2021

Abstract

Acid mine drainage (AMD) is a common environmental problem in many sulphide mines worldwide, and it is widely accepted that the microbial community plays a major role in keeping the process of acid generation active. The aim of this work is to describe, for the first time, the microbial community thriving in goethite and jarosite Fe precipitates from the AMD of the Libiola mine. The observed association is dominated by Proteobacteria (>50%), followed by Bacteroidetes (22.75%), Actinobacteria (7.13%), Acidobacteria (5.79%), Firmicutes (2.56%), and Nitrospirae (1.88%). Primary producers seem to be limited to macroalgae, with chemiolithotrophic strains being almost absent. A phylogenetic analysis of bacterial sequences highlighted the presence of heterotrophic bacteria, including genera actively involved in the AMD Fe cycle and genera (such as Cytophaga and Flavobacterium) that are able to reduce cellulose. The Fe precipitates constitute a microaerobic and complex environment in which many ecological niches are present, as proved by the wide range of bacterial species observed. This study is the first attempt to quantitatively characterize the microbial community of the studied area and constitutes a starting point to learn more about the microorganisms thriving in the AMD of the Libiola mine, as well as their potential applications.
2021
Istituto per la Protezione Sostenibile delle Piante - IPSP
heterotrophs
Fe-oxidizing bacteria
extreme acidic environment
Proteobacteria
Acidobacteriaceae
jarosite and goethite
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact