Among breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive with the worst prognosis and the highest rates of metastatic disease. To identify TNBC gene signatures, we applied the network-based methodology implemented by the SWIM software to gene expression data of TNBC patients in The Cancer Genome Atlas (TCGA) database. SWIM enables to predict key (switch) genes within the co-expression network, whose perturbations in expression pattern and abundance may contribute to the (patho)biological phenotype. Here, SWIM analysis revealed an interesting interplay between the genes encoding the transcription factors HMGA1, FOXM1, and MYBL2, suggesting a potential cooperation among these three switch genes in TNBC development. The correlative nature of this interplay in TNBC was assessed by in vitro experiments, demonstrating how they may actually modulate the expression of each other.

Gene network analysis using SWIM reveals interplay between the transcription factor-encoding genes HMGA1, FOXM1, and MYBL2 in triple-negative breast cancer

Fiscon G;Conte F;Paci P
2021

Abstract

Among breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive with the worst prognosis and the highest rates of metastatic disease. To identify TNBC gene signatures, we applied the network-based methodology implemented by the SWIM software to gene expression data of TNBC patients in The Cancer Genome Atlas (TCGA) database. SWIM enables to predict key (switch) genes within the co-expression network, whose perturbations in expression pattern and abundance may contribute to the (patho)biological phenotype. Here, SWIM analysis revealed an interesting interplay between the genes encoding the transcription factors HMGA1, FOXM1, and MYBL2, suggesting a potential cooperation among these three switch genes in TNBC development. The correlative nature of this interplay in TNBC was assessed by in vitro experiments, demonstrating how they may actually modulate the expression of each other.
2021
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
triple-negative breast cancer
correlation network
network medicine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact