Kinetic profile predictions of ITER PFPO-1 plasmas require high accuracy in the central electron temperatures to be applied to the calculation of third harmonic electron cyclotron absorption. Correctly predicting the transition from L-mode to H-mode further requires precise estimates of the ion heat flux in the periphery of the plasma. Recent versions of the quasi-linear transport models TGLF and QuaLiKiz were tested against an extensive set of experimental results from ASDEX Upgrade (AUG) and JET-ILW, where the focus was put on AUG plasmas heated by ECRH. Spectra obtained from TGLF are compared to a set of linear gyrokinetic simulations performed with GKW. Electron and ion temperature profiles obtained with TGLF-SAT1geo show good agreement with the experimental profiles, but there is a slight tendency to underpredict central T e and T i at high ratios T e/T i. QuaLiKiz yields reasonable results for T e and T i profiles in plasmas where the ion temperature gradient mode is dominant, but predicts a significantly too weak transport in the presence of dominant trapped electron modes in conditions of strong central electron heating.

Validation of quasi-linear turbulent transport models against plasmas with dominant electron heating for the prediction of ITER PFPO-1 plasmas

Mantica P;
2021

Abstract

Kinetic profile predictions of ITER PFPO-1 plasmas require high accuracy in the central electron temperatures to be applied to the calculation of third harmonic electron cyclotron absorption. Correctly predicting the transition from L-mode to H-mode further requires precise estimates of the ion heat flux in the periphery of the plasma. Recent versions of the quasi-linear transport models TGLF and QuaLiKiz were tested against an extensive set of experimental results from ASDEX Upgrade (AUG) and JET-ILW, where the focus was put on AUG plasmas heated by ECRH. Spectra obtained from TGLF are compared to a set of linear gyrokinetic simulations performed with GKW. Electron and ion temperature profiles obtained with TGLF-SAT1geo show good agreement with the experimental profiles, but there is a slight tendency to underpredict central T e and T i at high ratios T e/T i. QuaLiKiz yields reasonable results for T e and T i profiles in plasmas where the ion temperature gradient mode is dominant, but predicts a significantly too weak transport in the presence of dominant trapped electron modes in conditions of strong central electron heating.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
tokamakturbulent transportITER prefusion power operationvalidation quasi-linear models
File in questo prodotto:
File Dimensione Formato  
prod_455701-doc_176178.pdf

accesso aperto

Descrizione: Validation of quasi-linear turbulent transport models against plasmas with dominant electron heating for the prediction
Tipologia: Versione Editoriale (PDF)
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact