The electroreduction of CO2 into value-added products is a significant step toward closing the global carbon loop, but its performance remains far from meeting the requirement of any practical application. The insufficient understanding of the reaction mechanism is one of the major causes that impede future development. Although several possible reaction pathways have been proposed, significant debates exist due to the lack of experimental support. In this work, we provide opportunities for experiments to validate the reaction mechanism by providing predictions of the core-level shifts (CLS) of reactive intermediates, which can be verified by the X-ray photoelectron spectroscopy (XPS) data in the experiment. We first validated our methods from benchmark calculations of cases with reliable experiments, from which we reach consistent predictions with experimental results. Then, we conduct theoretical calculations under conditions close to the operando experimental ones and predict the C 1s CLS of 20 reactive intermediates in the CO2 reduction reaction (CO2RR) to CH4 and C2H4 on a Cu(100) catalyst by carefully including solvation effects and applied voltage (U). The results presented in this work should be guidelines for future experiments to verify and interpret the reaction mechanism of CO2RR.

Predictions of Chemical Shifts for Reactive Intermediates in CO2 Reduction under Operando Conditions

Sementa L;Fortunelli A;
2021

Abstract

The electroreduction of CO2 into value-added products is a significant step toward closing the global carbon loop, but its performance remains far from meeting the requirement of any practical application. The insufficient understanding of the reaction mechanism is one of the major causes that impede future development. Although several possible reaction pathways have been proposed, significant debates exist due to the lack of experimental support. In this work, we provide opportunities for experiments to validate the reaction mechanism by providing predictions of the core-level shifts (CLS) of reactive intermediates, which can be verified by the X-ray photoelectron spectroscopy (XPS) data in the experiment. We first validated our methods from benchmark calculations of cases with reliable experiments, from which we reach consistent predictions with experimental results. Then, we conduct theoretical calculations under conditions close to the operando experimental ones and predict the C 1s CLS of 20 reactive intermediates in the CO2 reduction reaction (CO2RR) to CH4 and C2H4 on a Cu(100) catalyst by carefully including solvation effects and applied voltage (U). The results presented in this work should be guidelines for future experiments to verify and interpret the reaction mechanism of CO2RR.
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto per i Processi Chimico-Fisici - IPCF
carbon loop; chemical shifts; CO2 reduction reaction; reactive intermediates
File in questo prodotto:
File Dimensione Formato  
prod_455705-doc_176185.pdf

solo utenti autorizzati

Descrizione: published article
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact