The existence of eigenfunctions for a class of fully anisotropic elliptic equations is estab- lished. The relevant equations are associated with constrained minimization problems for inte- gral functionals depending on the gradient of competing functions through general anisotropic Young functions. In particular, the latter need neither be radial, nor have a polynomial growth, and are not even assumed to satisfy the so called 2-condition. In particular, our analysis re- quires the development of some new aspects of the theory of anisotropic Orlicz-Sobolev spaces. This is a joint work with G. di Blasio and F. Feo [1].

An eigenvalue problem in anisotropica Orlicz.Sobolev spaces

Angela Alberico
2021

Abstract

The existence of eigenfunctions for a class of fully anisotropic elliptic equations is estab- lished. The relevant equations are associated with constrained minimization problems for inte- gral functionals depending on the gradient of competing functions through general anisotropic Young functions. In particular, the latter need neither be radial, nor have a polynomial growth, and are not even assumed to satisfy the so called 2-condition. In particular, our analysis re- quires the development of some new aspects of the theory of anisotropic Orlicz-Sobolev spaces. This is a joint work with G. di Blasio and F. Feo [1].
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Anisotropic Sobolev spaces; Constrained minimum problems; Eigenvalue problems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact