Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate) (50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6-1 wt.%) produced by sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared via in situ reversible addition-fragmentation chain transfer (RAFT) polymerization by sonication-assisted exfoliation of bP into styrene. For this sample,31P solid-state NMR and Raman spectroscopy confirmed an excellent preservation of bP structure.

Dispersion of few-layer black phosphorus in binary polymer blend and block copolymer matrices

Coiai S;Passaglia E;Legnaioli S;Borsacchi S;Dinelli F;Ferretti AM;Caporali M;Peruzzini M;Cicogna F
2021

Abstract

Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate) (50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6-1 wt.%) produced by sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared via in situ reversible addition-fragmentation chain transfer (RAFT) polymerization by sonication-assisted exfoliation of bP into styrene. For this sample,31P solid-state NMR and Raman spectroscopy confirmed an excellent preservation of bP structure.
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto Nazionale di Ottica - INO
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
black phosphorus (bP)
composites
block co-polymers
RAFT
NMR
File in questo prodotto:
File Dimensione Formato  
prod_455815-doc_176274.pdf

accesso aperto

Descrizione: Dispersion of few-layer black phosphorus in binary polymer blend and block copolymer matrices
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact