We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ?. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an O(t-1/2) inviscid damping while the vorticity and density gradient grow as O(t1/2). The result holds at least until the natural, nonlinear timescale t??-2. Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, i.e. tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.
Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations
Roberta Bianchini;
2023
Abstract
We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ?. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an O(t-1/2) inviscid damping while the vorticity and density gradient grow as O(t1/2). The result holds at least until the natural, nonlinear timescale t??-2. Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, i.e. tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.File | Dimensione | Formato | |
---|---|---|---|
prod_457295-doc_203713.pdf
accesso aperto
Descrizione: lavoro in pdf
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
802.97 kB
Formato
Adobe PDF
|
802.97 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.