The role of non-covalent interactions (NCIs) has broadened with the inclusion of new types of interactions and a plethora of weak donor/acceptor partners. This work illustrates the potential of chirped-pulse Fourier transform microwave technique, which has revolutionized the field of rotational spectroscopy. In particular, it has been exploited to reveal the role of NCIs' in the molecular self-aggregation of difluoromethane where a pentamer, two hexamers and a heptamer were detected. The development of a new automated assignment program and a sophisticated computational screening protocol was essential for identifying the homoclusters in conditions of spectral congestion. The major role of dispersion forces leads to less directional interactions and more distorted structures than those found in polar clusters, although a detailed analysis demonstrates that the dominant interaction energy is the pairwise interaction. The tetramer cluster is identified as a structural unit in larger clusters, representing the maximum expression of bond between dimers.

The Role of Non-Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane

Prampolini G;
2021

Abstract

The role of non-covalent interactions (NCIs) has broadened with the inclusion of new types of interactions and a plethora of weak donor/acceptor partners. This work illustrates the potential of chirped-pulse Fourier transform microwave technique, which has revolutionized the field of rotational spectroscopy. In particular, it has been exploited to reveal the role of NCIs' in the molecular self-aggregation of difluoromethane where a pentamer, two hexamers and a heptamer were detected. The development of a new automated assignment program and a sophisticated computational screening protocol was essential for identifying the homoclusters in conditions of spectral congestion. The major role of dispersion forces leads to less directional interactions and more distorted structures than those found in polar clusters, although a detailed analysis demonstrates that the dominant interaction energy is the pairwise interaction. The tetramer cluster is identified as a structural unit in larger clusters, representing the maximum expression of bond between dimers.
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
difluoromethane; molecular clusters; non covalent interactions; quantum chemical
File in questo prodotto:
File Dimensione Formato  
prod_454959-doc_176007.pdf

accesso aperto

Descrizione: The Role of Non-Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact