The discovery of a planet orbiting around Proxima Centauri, the closest star to the Sun, opens new avenues for the remote observations of the atmosphere and surface of an exoplanet, Proxima b. To date, three-dimensional (3D) general circulation models (GCMs) are the best available tools to investigate the properties of the exo-atmospheres, waiting for the next generation of space- and ground-based telescopes. In this work, we use the Planet Simulator (PlaSim), an intermediate-complexity, flexible and fast 3D GCM, suited to handle all the orbital and physical parameters of a planet and to study the dynamics of its atmosphere. Assuming an Earth-like atmosphere and a 1:1 spin/orbit configuration (tidal locking), our simulations of Proxima b are consistent with a dayside open ocean planet with a superrotating atmosphere. Moreover, because of the limited representation of the radiative transfer in PlaSim, we compute the spectrum of the exoplanet with an offline radiative transfer code with a spectral resolution of 1 nm. This spectrum is used to derive the thermal phase curves for different orbital inclination angles. In combination with instrumental detection sensitivities, the different thermal phase curves are used to evaluate observation conditions at ground level (e.g., ELT) or in space (e.g., James Webb Space Telescope (JWST)). We estimated the exposure time to detect the Proxima b (assuming an Earth-like atmosphere) thermal phase curve in the far-IR with JWST with signal-to-noise ratio 1. Under the hypothesis of total noise dominated by shot noise, neglecting other possible extra contribution producing a noise floor, the exposure time is equal to 5 hr for each orbital epoch.

Three-dimensional Climate Simulations for the Detectability of Proxima Centauri b

Cagnazzo Chiara;Fierli Federico;
2021

Abstract

The discovery of a planet orbiting around Proxima Centauri, the closest star to the Sun, opens new avenues for the remote observations of the atmosphere and surface of an exoplanet, Proxima b. To date, three-dimensional (3D) general circulation models (GCMs) are the best available tools to investigate the properties of the exo-atmospheres, waiting for the next generation of space- and ground-based telescopes. In this work, we use the Planet Simulator (PlaSim), an intermediate-complexity, flexible and fast 3D GCM, suited to handle all the orbital and physical parameters of a planet and to study the dynamics of its atmosphere. Assuming an Earth-like atmosphere and a 1:1 spin/orbit configuration (tidal locking), our simulations of Proxima b are consistent with a dayside open ocean planet with a superrotating atmosphere. Moreover, because of the limited representation of the radiative transfer in PlaSim, we compute the spectrum of the exoplanet with an offline radiative transfer code with a spectral resolution of 1 nm. This spectrum is used to derive the thermal phase curves for different orbital inclination angles. In combination with instrumental detection sensitivities, the different thermal phase curves are used to evaluate observation conditions at ground level (e.g., ELT) or in space (e.g., James Webb Space Telescope (JWST)). We estimated the exposure time to detect the Proxima b (assuming an Earth-like atmosphere) thermal phase curve in the far-IR with JWST with signal-to-noise ratio 1. Under the hypothesis of total noise dominated by shot noise, neglecting other possible extra contribution producing a noise floor, the exposure time is equal to 5 hr for each orbital epoch.
2021
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Roma
Istituto di Scienze Marine - ISMAR - Sede Secondaria Roma
Exoplanets
Exoplanet atmospheres
Planetary climates
Ocean planets
Astronomical simulations
Exoplanet detection methods
Infrared photometry
Infrared telescopes
Light curves
Two-color diagrams
File in questo prodotto:
File Dimensione Formato  
Galuzzo_2021_ApJ_909_191.pdf

solo utenti autorizzati

Descrizione: https://doi.org/10.3847/1538-4357/abdeb4
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact