In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.

The virtual element method for a minimal surface problem

S Bertoluzza;D Prada;M Verani
2020

Abstract

In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
2020
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Virtual element method
Minimal surface problem
Quasi-linear elliptic PDEs
File in questo prodotto:
File Dimensione Formato  
prod_457426-doc_177476.pdf

accesso aperto

Descrizione: The virtual element method for a minimal surface problem
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 8.37 MB
Formato Adobe PDF
8.37 MB Adobe PDF Visualizza/Apri
prod_457426-doc_180964.pdf

solo utenti autorizzati

Descrizione: The virtual element method for a minimal surface problem
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact