In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.

The virtual element method for a minimal surface problem

PF Antonietti;S Bertoluzza;D Prada;M Verani
2020

Abstract

In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
2020
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Virtual element method
Minimal surface problem
Quasi-linear elliptic PDEs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact