In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
The virtual element method for a minimal surface problem
S Bertoluzza;D Prada;M Verani
2020
Abstract
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_457426-doc_177476.pdf
accesso aperto
Descrizione: The virtual element method for a minimal surface problem
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
8.37 MB
Formato
Adobe PDF
|
8.37 MB | Adobe PDF | Visualizza/Apri |
prod_457426-doc_180964.pdf
solo utenti autorizzati
Descrizione: The virtual element method for a minimal surface problem
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.83 MB
Formato
Adobe PDF
|
4.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.