This paper describes a class of novel initializations in Deterministic Particle Swarm Optimization (DPSO) for approximately solving costly unconstrained global optimization problems. The initializations are based on choosing specific dense initial positions and velocities for particles. These choices tend to induce in some sense orthogonality of particles' trajectories, in the early iterations, in order to better explore the search space. Our proposal is inspired by both a theoretical analysis on a reformulation of PSO iteration, and by possible limits of the proposals reported in Campana et al. (2010); Campana et al. (2013). We explicitly show that, in comparison with other initializations from the literature, our initializations tend to scatter PSO particles, at least in the first iterations. The latter goal is obtained by imposing that the initial choice of particles' position/velocity satisfies specific conjugacy conditions, with respect to a matrix depending on the parameters of PSO. In particular, by an appropriate condition on particles' velocities, our initializations also resemble and partially extend a general paradigm in the literature of exact methods for derivative-free optimization. Moreover, we propose dense initializations for DPSO, so that the final approximate global solution obtained is possibly not too sparse, which might cause troubles in some applications. Numerical results, on both Portfolio Selection and Computational Fluid Dynamics problems, validate our theory and prove the effectiveness of our proposal, which applies also in case different neighborhood topologies are adopted in DPSO.

Dense conjugate initialization for deterministic PSO in applications: ORTHOinit+

Leotardi C;Serani A;Diez M;Campana EF;
2021

Abstract

This paper describes a class of novel initializations in Deterministic Particle Swarm Optimization (DPSO) for approximately solving costly unconstrained global optimization problems. The initializations are based on choosing specific dense initial positions and velocities for particles. These choices tend to induce in some sense orthogonality of particles' trajectories, in the early iterations, in order to better explore the search space. Our proposal is inspired by both a theoretical analysis on a reformulation of PSO iteration, and by possible limits of the proposals reported in Campana et al. (2010); Campana et al. (2013). We explicitly show that, in comparison with other initializations from the literature, our initializations tend to scatter PSO particles, at least in the first iterations. The latter goal is obtained by imposing that the initial choice of particles' position/velocity satisfies specific conjugacy conditions, with respect to a matrix depending on the parameters of PSO. In particular, by an appropriate condition on particles' velocities, our initializations also resemble and partially extend a general paradigm in the literature of exact methods for derivative-free optimization. Moreover, we propose dense initializations for DPSO, so that the final approximate global solution obtained is possibly not too sparse, which might cause troubles in some applications. Numerical results, on both Portfolio Selection and Computational Fluid Dynamics problems, validate our theory and prove the effectiveness of our proposal, which applies also in case different neighborhood topologies are adopted in DPSO.
2021
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Global optimization
Deterministic PSO (DPSO)
Particles initial position and velocity
Conjugate vectors
File in questo prodotto:
File Dimensione Formato  
prod_452588-doc_170217.pdf

solo utenti autorizzati

Descrizione: Dense conjugate initialization for deterministic PSO in applications: ORTHOinit+
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397282
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact