By means of Langevin dynamics simulations, we investigate the gel formation of randomly functionalized polymers in solution, with the ability to form both intra- and intermolecular reversible bonds. Under highly dilute conditions, these polymers form soft nano-objects (so-called single-chain nanoparticles, SCNPs), resulting from the purely intramolecular cross-linking of the reactive functional groups. Here, we show that the competition between intra- and intermolecular bonds at finite concentration is governed by a delicate balance of various entropic contributions and leads to a density-dependent effective valence. System-spanning networks are formed at relatively low monomer densities and their stability is mediated by just a small number of intermolecular connections per chain. The formation of intermolecular bonds furthermore can induce a nonmonotonic dependence of the polymer size on the density for long bond lifetimes. Concomitantly, the polymers in the percolating cluster adopt an intramolecular structure characteristic for self-avoiding chains, which constitutes a strong contrast to the fractal globular behavior of intramolecularly cross-linked SCNPs in crowded solutions with purely topological interactions (no intermolecular bonds). Finally, we study the dynamics of the system, which displays signatures expected for reversible gel-forming systems. An interesting behavior emerges in the reorganization dynamics of the percolating cluster: the relaxation is mostly mediated by the diffusion over long distances, through breaking and formation of bonds, of chains that do not leave the percolating cluster. Regarding the few chains that are transiently free, the time they spend until they reattach to the cluster is solely governed by the bond strength.

Gel Formation in Reversibly Cross-Linking Polymers

Rovigatti L.;Zaccarelli E.;Sciortino F.;
2021

Abstract

By means of Langevin dynamics simulations, we investigate the gel formation of randomly functionalized polymers in solution, with the ability to form both intra- and intermolecular reversible bonds. Under highly dilute conditions, these polymers form soft nano-objects (so-called single-chain nanoparticles, SCNPs), resulting from the purely intramolecular cross-linking of the reactive functional groups. Here, we show that the competition between intra- and intermolecular bonds at finite concentration is governed by a delicate balance of various entropic contributions and leads to a density-dependent effective valence. System-spanning networks are formed at relatively low monomer densities and their stability is mediated by just a small number of intermolecular connections per chain. The formation of intermolecular bonds furthermore can induce a nonmonotonic dependence of the polymer size on the density for long bond lifetimes. Concomitantly, the polymers in the percolating cluster adopt an intramolecular structure characteristic for self-avoiding chains, which constitutes a strong contrast to the fractal globular behavior of intramolecularly cross-linked SCNPs in crowded solutions with purely topological interactions (no intermolecular bonds). Finally, we study the dynamics of the system, which displays signatures expected for reversible gel-forming systems. An interesting behavior emerges in the reorganization dynamics of the percolating cluster: the relaxation is mostly mediated by the diffusion over long distances, through breaking and formation of bonds, of chains that do not leave the percolating cluster. Regarding the few chains that are transiently free, the time they spend until they reattach to the cluster is solely governed by the bond strength.
2021
Istituto dei Sistemi Complessi - ISC
SINGLE-CHAIN NANOPARTICLES
MOLECULAR-SIZE DISTRIBUTION
DIRECTIONAL ATTRACTIVE FORCES
LIMITED-VALENCE
DNA NANOSTARS
SELF
COVALENT
NONCOVALENT
MODEL
DYNAMICS
File in questo prodotto:
File Dimensione Formato  
prod_456337-doc_176580.pdf

accesso aperto

Descrizione: Gel Formation in Reversibly Cross-Linking Polymers
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact