Though liposome-based drugs are in clinical use, the mechanism of cell internalization of liposomes is yet an object of controversy. The present experimental investigation, carried out on human glioblastoma cells, indicated different internalization routes for two diastereomeric liposomes. Molecular dynamics simulations of the lipid bilayers of the two formulations indicated that the different stereochemistry of a lipid component controls some parameters such as area per lipid molecule and fluidity of lipid membranes, surface potential and water organization at the lipid/water interface, all of which affect the interaction with biomolecules and cell components.

How stereochemistry of lipid components can affect lipid organization and the route of liposome internalization into cells

Borocci S
;
Bombelli C;Ceccacci F;Mancini G
2021

Abstract

Though liposome-based drugs are in clinical use, the mechanism of cell internalization of liposomes is yet an object of controversy. The present experimental investigation, carried out on human glioblastoma cells, indicated different internalization routes for two diastereomeric liposomes. Molecular dynamics simulations of the lipid bilayers of the two formulations indicated that the different stereochemistry of a lipid component controls some parameters such as area per lipid molecule and fluidity of lipid membranes, surface potential and water organization at the lipid/water interface, all of which affect the interaction with biomolecules and cell components.
2021
Istituto per i Sistemi Biologici - ISB (ex IMC)
Istituto per i Sistemi Biologici - ISB (ex IMC) - Sede Secondaria Roma
liposome internalization
stereochemistry
lipid organization
molecular dynamics simulations
File in questo prodotto:
File Dimensione Formato  
nanoscale 2022.pdf

accesso aperto

Descrizione: How stereochemistry of lipid components can affect lipid organization and the route of liposome internalization into cells
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact