Eggplant fruits are normally harvested and marketed when they reach the commercial maturity, that precedes the physiological ripening when dramatic changes in taste, composition and peel color take place. The biochemical changes in fruit peel across the developmental stages, characterized also by a sizeable decrement of anthocyanins, were studied in four eggplant genotypes differing for fruit pigmentation. HPLC-DAD, HPLC-ESI-MS and NMR analyses identified naringenin chalcone and naringenin 7-O-glucoside as the main phenolic compounds in extracts from the physiological ripe stage, along with compounds tentatively identified as glycosylated naringenin chalcone, naringenin and kaempferol. On average, the levels of anthocyanins, responsible for the peel pigmentation, dropped by 75% during development, while, surprisingly, the level of total phenols showed a slight decrease of 16%, with a final concentration of more than 1000 mg/100g dw. RT-qPCR expression profiling of nine genes coding for enzymes putatively acting at different steps of the involved pathways showed modulation mostly consistent with the observed changes in phenolic composition, with a remarkable decrease in the activity of flavonol reductase and an increase in flavonol synthase during berry development. Antioxidant activity monitored by peroxyl scavenging was similar at all developmental stages while Fremy's analysis evidenced a slight decrement at full physiological ripening. These results are valuable to address the improvement of eggplant commercial fruit quality and the valorization of unmarketable physiological ripe fruits, especially for the newly accumulation of the health-promoting compounds chalcones and flavanones.

Scrapped but not neglected: Insights into the composition, molecular modulation and antioxidant capacity of phenols in peel of eggplant (Solanum melongena L.) fruits at different developmental stages

Gattolin S;
2021

Abstract

Eggplant fruits are normally harvested and marketed when they reach the commercial maturity, that precedes the physiological ripening when dramatic changes in taste, composition and peel color take place. The biochemical changes in fruit peel across the developmental stages, characterized also by a sizeable decrement of anthocyanins, were studied in four eggplant genotypes differing for fruit pigmentation. HPLC-DAD, HPLC-ESI-MS and NMR analyses identified naringenin chalcone and naringenin 7-O-glucoside as the main phenolic compounds in extracts from the physiological ripe stage, along with compounds tentatively identified as glycosylated naringenin chalcone, naringenin and kaempferol. On average, the levels of anthocyanins, responsible for the peel pigmentation, dropped by 75% during development, while, surprisingly, the level of total phenols showed a slight decrease of 16%, with a final concentration of more than 1000 mg/100g dw. RT-qPCR expression profiling of nine genes coding for enzymes putatively acting at different steps of the involved pathways showed modulation mostly consistent with the observed changes in phenolic composition, with a remarkable decrease in the activity of flavonol reductase and an increase in flavonol synthase during berry development. Antioxidant activity monitored by peroxyl scavenging was similar at all developmental stages while Fremy's analysis evidenced a slight decrement at full physiological ripening. These results are valuable to address the improvement of eggplant commercial fruit quality and the valorization of unmarketable physiological ripe fruits, especially for the newly accumulation of the health-promoting compounds chalcones and flavanones.
2021
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Fleshly fruit
Solanaceae
Pathway of phenylpropanoids
Anthocyanins
Flavonoids
Chalcones
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact