The availability of big data in agriculture, enhanced by free remote sensing data and on-board sensor-based data, provides an opportunity to understand within-field and year-to-year variability and promote precision farming practices for site-specific management. This paper explores the performance in durum wheat yield estimation using different technologies and data processing methods. A state-of-the-art data cleaning technique has been applied to data from a yield monitoring system, giving a good agreement between yield monitoring data and hand sampled data. The potential use of Sentinel-2 and Landsat-8 images in precision agriculture for within-field production variability is then assessed, and the optimal time for remote sensing to relate to durum wheat yield is also explored. Comparison of the Normalized Difference Vegetation Index(NDVI) with yield monitoring data reveals significant and highly positive linear relationships (r ranging from 0.54 to 0.74) explaining most within-field variability for all the images acquired between March and April. Remote sensing data analyzed with these methods could be used to assess durum wheat yield and above all to depict spatial variability in order to adopt site-specific management and improve productivity, save time and provide a potential alternative to traditional farming practices.

A Precision Agriculture Approach for Durum Wheat Yield Assessment Using Remote Sensing Data and Yield Mapping

Toscano P;Di Gennaro S F;Matese A
2019

Abstract

The availability of big data in agriculture, enhanced by free remote sensing data and on-board sensor-based data, provides an opportunity to understand within-field and year-to-year variability and promote precision farming practices for site-specific management. This paper explores the performance in durum wheat yield estimation using different technologies and data processing methods. A state-of-the-art data cleaning technique has been applied to data from a yield monitoring system, giving a good agreement between yield monitoring data and hand sampled data. The potential use of Sentinel-2 and Landsat-8 images in precision agriculture for within-field production variability is then assessed, and the optimal time for remote sensing to relate to durum wheat yield is also explored. Comparison of the Normalized Difference Vegetation Index(NDVI) with yield monitoring data reveals significant and highly positive linear relationships (r ranging from 0.54 to 0.74) explaining most within-field variability for all the images acquired between March and April. Remote sensing data analyzed with these methods could be used to assess durum wheat yield and above all to depict spatial variability in order to adopt site-specific management and improve productivity, save time and provide a potential alternative to traditional farming practices.
2019
Istituto di Biometeorologia - IBIMET - Sede Firenze
yield mapping
remote sensing
durum wheat
precision agriculture
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? ND
social impact