Process-based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (NO) fluxes remain challenging. Models are limited by our understanding of soil-plant-microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of NO emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating NO fluxes on annual timescales, while APSIM was most accurate for daily NO fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)-derived method for the Swiss agricultural GHG inventory (IPCC-Swiss), but individual models were not systematically more accurate than IPCC-Swiss. The model ensemble overestimated the NO mitigation effect of the clover-based treatment (measured: 39-45%; ensemble: 52-57%) but was more accurate than IPCC-Swiss (IPCC-Swiss: 72-81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on NO emissions.

Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland

Brilli Lorenzo;
2020

Abstract

Process-based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (NO) fluxes remain challenging. Models are limited by our understanding of soil-plant-microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of NO emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating NO fluxes on annual timescales, while APSIM was most accurate for daily NO fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)-derived method for the Swiss agricultural GHG inventory (IPCC-Swiss), but individual models were not systematically more accurate than IPCC-Swiss. The model ensemble overestimated the NO mitigation effect of the clover-based treatment (measured: 39-45%; ensemble: 52-57%) but was more accurate than IPCC-Swiss (IPCC-Swiss: 72-81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on NO emissions.
2020
Istituto di Biometeorologia - IBIMET - Sede Firenze
APSIM
biogeochemical modeling
DayCent
eddy covariance
model validation
PaSim
File in questo prodotto:
File Dimensione Formato  
prod_454262-doc_175028.pdf

accesso aperto

Descrizione: Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact