Recently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS experiment, the rats were exposed for 21 days to the CRS and then were treated with Oxo (0.2 mg/kg) for further 10 days. The acute Oxo treatment showed an ability to significantly reduce reactive oxygen species (ROS), singlet oxygen (O), pro-inflammatory cytokines levels (IL-1? and IL-6) and phosphorylated NF-?B-p65. Acute Oxo treatment also increased superoxide dismutase (SOD)-2 protein levels and stimulated SOD activity. No differences were detected in the anti-inflammatory cytokine levels, including IL-10 and TGF-?1. In the group of rats exposed to the CRS were found increased hippocampal IL-1? and IL-6 levels, together with a reduction of SOD activity level. These changes produced by CRS were counteracted by chronic Oxo treatment. In contrast, the upregulation of ROS and O levels in the CRS group was not counteracted by chronic Oxo treatment. The results revealed a hippocampal anti-inflammatory and antioxidant effect of Oxo treatment in both basal conditions and anti-inflammatory in the CRS rat model.
Anti-inflammatory and antioxidant effects of muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus
Domenico Nuzzo;Marta Di Carlo;
2019
Abstract
Recently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS experiment, the rats were exposed for 21 days to the CRS and then were treated with Oxo (0.2 mg/kg) for further 10 days. The acute Oxo treatment showed an ability to significantly reduce reactive oxygen species (ROS), singlet oxygen (O), pro-inflammatory cytokines levels (IL-1? and IL-6) and phosphorylated NF-?B-p65. Acute Oxo treatment also increased superoxide dismutase (SOD)-2 protein levels and stimulated SOD activity. No differences were detected in the anti-inflammatory cytokine levels, including IL-10 and TGF-?1. In the group of rats exposed to the CRS were found increased hippocampal IL-1? and IL-6 levels, together with a reduction of SOD activity level. These changes produced by CRS were counteracted by chronic Oxo treatment. In contrast, the upregulation of ROS and O levels in the CRS group was not counteracted by chronic Oxo treatment. The results revealed a hippocampal anti-inflammatory and antioxidant effect of Oxo treatment in both basal conditions and anti-inflammatory in the CRS rat model.File | Dimensione | Formato | |
---|---|---|---|
prod_457649-doc_177634.pdf
solo utenti autorizzati
Descrizione: Anti-inflammatory and antioxidant effects of muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.