We present here an investigation aimed at exploring the role of the microstructure on the magnetic properties of nanostructured cobalt ferrite. Bulk, almost fully dense, nanograined ferrites have been obtained starting from nanopowders prepared by a simple, inexpensive, water-based, modified Pechini method. This synthesis yielded largely aggregated, pure single-phase cobalt ferrite nanoparticles of ca. 35 nm average size, which have been then densified by high-pressure field-assisted sintering. Different sintering conditions (pressure up to 650 MPa and temperature up to 800 °C) and procedures have been used on both as-prepared and milled nanopowders in order to obtain materials with a spectrum of complex microstructures. In all cases, the sintering process did not produce any change in the phase composition. At the same time, using a high uniaxial pressure in combination with relatively low sintering temperatures and times, allowed for obtaining a high degree of densification while preserving the nanometric size of the crystallites. Moreover, we observed that in the densified materials the best magnetic properties are not necessarily associated with a more uniform microstructure, but rather arise from a delicate balance between moderate aggregation, grain size and high density.

Magnetic properties of bulk nanocrystalline cobalt ferrite obtained by high-pressure field assisted sintering

Petrecca Michele;Sangregorio Claudio;
2021

Abstract

We present here an investigation aimed at exploring the role of the microstructure on the magnetic properties of nanostructured cobalt ferrite. Bulk, almost fully dense, nanograined ferrites have been obtained starting from nanopowders prepared by a simple, inexpensive, water-based, modified Pechini method. This synthesis yielded largely aggregated, pure single-phase cobalt ferrite nanoparticles of ca. 35 nm average size, which have been then densified by high-pressure field-assisted sintering. Different sintering conditions (pressure up to 650 MPa and temperature up to 800 °C) and procedures have been used on both as-prepared and milled nanopowders in order to obtain materials with a spectrum of complex microstructures. In all cases, the sintering process did not produce any change in the phase composition. At the same time, using a high uniaxial pressure in combination with relatively low sintering temperatures and times, allowed for obtaining a high degree of densification while preserving the nanometric size of the crystallites. Moreover, we observed that in the densified materials the best magnetic properties are not necessarily associated with a more uniform microstructure, but rather arise from a delicate balance between moderate aggregation, grain size and high density.
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
bulk material
cobalt ferrite
microstructure
nanopowders
sintering
File in questo prodotto:
File Dimensione Formato  
prod_457654-doc_177725.pdf

solo utenti autorizzati

Descrizione: Magnetic properties of bulk nanocrystalline cobalt ferrite obtained by high-pressure field assisted sintering
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Baldini_AB_MP-3.pdf

Open Access dal 26/02/2022

Descrizione: “This is the Accepted Manuscript version of an article accepted for publication in Journal of Physics D: Applied Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6463/abe503.”
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 838.68 kB
Formato Adobe PDF
838.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/398051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact