Recently, metal-clad leaky waveguides (MCLW) have been proposed as highly sensitive single point sensor devices for small-volume refractive index (RI) and fluorescence detection. In this paper, we present a theoretical study of the efficiency of MCLW-based sensors on glass substrate, for fluorescence detection. It is shown that MCLWs can be designed in order to obtain an efficient coupling of fluorescence emission with their leaky modes. This leads to a higher directionality of the fluorescence emission into the glass substrate, when compared to the emission near a pure glass/water interface and surface-plasmon coupled emission (SPCE). Numerical analyses also indicate that collecting the fluorescence emission through a water-immersed microscope objective, may result in a 70-fold enhancement of the detectable signal when compared to conventional fluorescence detection carried out on a glass slide.

Optimization of metal-clad waveguides for sensitive fluorescence detection

Bernini R;
2006

Abstract

Recently, metal-clad leaky waveguides (MCLW) have been proposed as highly sensitive single point sensor devices for small-volume refractive index (RI) and fluorescence detection. In this paper, we present a theoretical study of the efficiency of MCLW-based sensors on glass substrate, for fluorescence detection. It is shown that MCLWs can be designed in order to obtain an efficient coupling of fluorescence emission with their leaky modes. This leads to a higher directionality of the fluorescence emission into the glass substrate, when compared to the emission near a pure glass/water interface and surface-plasmon coupled emission (SPCE). Numerical analyses also indicate that collecting the fluorescence emission through a water-immersed microscope objective, may result in a 70-fold enhancement of the detectable signal when compared to conventional fluorescence detection carried out on a glass slide.
2006
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
PLASMON-COUPLED EMISSION
SINGLE-MOLECULE FLUORESCENCE
SURFACE
INTERFACE
SENSOR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/39828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact