Reinforcement Learning (RL) methods provide a solution for decision-making problems under uncertainty. An agent finds a suitable policy through a reward function by interacting with a dynamic environment. However, for complex and large problems it is very difficult to specify and tune the reward function. Inverse Reinforcement Learning (IRL) may mitigate this problem by learning the reward function through expert demonstrations. This work exploits an IRL method named Max-Margin Algorithm (MMA) to learn the reward function for a robotic navigation problem. The learned reward function reveals the demonstrated policy (expert policy) better than all other policies. Results show that this method has better convergence and learned reward functions through the adopted method represents expert behavior more efficiently.

Inverse Reinforcement Learning Through Max-Margin Algorithm

Antonio Coronato
2021

Abstract

Reinforcement Learning (RL) methods provide a solution for decision-making problems under uncertainty. An agent finds a suitable policy through a reward function by interacting with a dynamic environment. However, for complex and large problems it is very difficult to specify and tune the reward function. Inverse Reinforcement Learning (IRL) may mitigate this problem by learning the reward function through expert demonstrations. This work exploits an IRL method named Max-Margin Algorithm (MMA) to learn the reward function for a robotic navigation problem. The learned reward function reveals the demonstrated policy (expert policy) better than all other policies. Results show that this method has better convergence and learned reward functions through the adopted method represents expert behavior more efficiently.
2021
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
978-1-64368-186-3
reinforcement learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/398300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact