Trichoderma spp. are beneficial soil microorganisms used in sustainable agriculture for their ability to enhance plant performance under different environments. However, Trichoderma-activated mechanisms that help plants to cope with water stress are still not completely defined. We investigated morpho-physiological, biochemical and transcriptomic responses to PEG-induced short severe water stress in Trichoderma longibrachiatum-inoculated and non-inoculated Solanum lycopersicum. Trichoderma had significant biostimulation effects on the plant and, after stress, allowed recovery of growth and photosynthesis to the levels of unstressed plants. Whole-transcriptome analysis was carried out after 1 day of 15 % PEG treatment in 22-day Trichoderma-inoculated and non-inoculated plants. Under non-stress conditions, Trichoderma triggered an extensive transcriptional reprogramming, specifically modulating the expression of classes of transcription factors and of genes involved in photosynthesis, antioxidant defences and maintenance of a juvenile state. Though the effects of water stress were predominant, mainly boosting transcription of stress-responsive genes, pre-treatment with Trichoderma specifically affected genes involved in mitigation of stress damage. Our findings provide new insights into the plant interplay with Trichoderma, useful to further exploit rhizosphere fungi for the improvement of plant performance under limiting environments.

Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato

De Palma M;Docimo T;Guida G;Albrizio R;Giorio P;Ruocco M;Tucci M
2021

Abstract

Trichoderma spp. are beneficial soil microorganisms used in sustainable agriculture for their ability to enhance plant performance under different environments. However, Trichoderma-activated mechanisms that help plants to cope with water stress are still not completely defined. We investigated morpho-physiological, biochemical and transcriptomic responses to PEG-induced short severe water stress in Trichoderma longibrachiatum-inoculated and non-inoculated Solanum lycopersicum. Trichoderma had significant biostimulation effects on the plant and, after stress, allowed recovery of growth and photosynthesis to the levels of unstressed plants. Whole-transcriptome analysis was carried out after 1 day of 15 % PEG treatment in 22-day Trichoderma-inoculated and non-inoculated plants. Under non-stress conditions, Trichoderma triggered an extensive transcriptional reprogramming, specifically modulating the expression of classes of transcription factors and of genes involved in photosynthesis, antioxidant defences and maintenance of a juvenile state. Though the effects of water stress were predominant, mainly boosting transcription of stress-responsive genes, pre-treatment with Trichoderma specifically affected genes involved in mitigation of stress damage. Our findings provide new insights into the plant interplay with Trichoderma, useful to further exploit rhizosphere fungi for the improvement of plant performance under limiting environments.
2021
Istituto di Bioscienze e Biorisorse
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Istituto per la Protezione Sostenibile delle Piante - IPSP
Abiotic stress
Biostimulants
Photosynthesis
ROS scavenging
Transcription factors
Transcriptomics
File in questo prodotto:
File Dimensione Formato  
prod_455855-doc_176302.pdf

solo utenti autorizzati

Descrizione: Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/398321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact