In the recent years satellite radar altimetry has evolved from pulse-limited low resolution mode (LRM) to a synthetic aperture radar (SAR) high resolution mode. The SAR mode focusses and coherently sums all radar return echoes within the 2-s time window the target surface area is in the antenna beam. In principle the SAR processing improves along-track resolution. Land contamination has been a major concern for inland waters altimetry and SAR can reduce land interference. This paper shows that the physics of specular echoes from smooth inland waters leads to a very different approach which we call precise inland surface altimetry (PISA). PISA uses only echoes within the specular ``flash'' period, which is approximately the time the satellite nadir crosses over the water body. The processing is four orders of magnitude less than SAR. Land interference is negligible because specular water echoes are usually >50 dB greater than land. Sentinel-3 SRAL dataset on the salar de Uyuni (Bolivia) is used to evaluate PISA ranging precision. During inundation (wet months), echoes are at the theoretical maximum radar cross section (RCS)

Precise inland surface altimetry (PISA) with nadir specular echoes from Sentinel-3: Algorithm and performance assessment

Vignudelli S
2021

Abstract

In the recent years satellite radar altimetry has evolved from pulse-limited low resolution mode (LRM) to a synthetic aperture radar (SAR) high resolution mode. The SAR mode focusses and coherently sums all radar return echoes within the 2-s time window the target surface area is in the antenna beam. In principle the SAR processing improves along-track resolution. Land contamination has been a major concern for inland waters altimetry and SAR can reduce land interference. This paper shows that the physics of specular echoes from smooth inland waters leads to a very different approach which we call precise inland surface altimetry (PISA). PISA uses only echoes within the specular ``flash'' period, which is approximately the time the satellite nadir crosses over the water body. The processing is four orders of magnitude less than SAR. Land interference is negligible because specular water echoes are usually >50 dB greater than land. Sentinel-3 SRAL dataset on the salar de Uyuni (Bolivia) is used to evaluate PISA ranging precision. During inundation (wet months), echoes are at the theoretical maximum radar cross section (RCS)
2021
Istituto di Biofisica - IBF
Satellite radar altimetry
Altimeter bursts
Water level
Specular inland water bodies
Radar cross section
Sentinel-3
Salar de Uyuni
UYUNI
SALAR
MODEL
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/398396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact