Emerging non-volatile memory technologies are promising due to their anticipated capacity benefits, non-volatility, and zero idle energy. One of the most promising candidates is resistive random access memory (RRAM) based on resistive switching (RS). This paper reviews the development of RS device technology including the fundamental physics, material engineering, three-dimension (3D) integration, and bottom-up fabrication. The device operation, physical mechanisms for resistive switching, reliability metrics, and memory cell selector candidates are summarized from the recent advancement in both industry and academia. Options for 3D memory array architectures are presented for the mass storage application. Finally, the potential application of bottom-up fabrication approaches for effective manufacturing is introduced.
Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication
Brivio S;Spiga S;
2017
Abstract
Emerging non-volatile memory technologies are promising due to their anticipated capacity benefits, non-volatility, and zero idle energy. One of the most promising candidates is resistive random access memory (RRAM) based on resistive switching (RS). This paper reviews the development of RS device technology including the fundamental physics, material engineering, three-dimension (3D) integration, and bottom-up fabrication. The device operation, physical mechanisms for resistive switching, reliability metrics, and memory cell selector candidates are summarized from the recent advancement in both industry and academia. Options for 3D memory array architectures are presented for the mass storage application. Finally, the potential application of bottom-up fabrication approaches for effective manufacturing is introduced.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.