Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1?, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on?
Corradini I;Matteoli M
2020
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1?, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.File | Dimensione | Formato | |
---|---|---|---|
Pozzi et al 2020_Transl Psych_rev.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
689.5 kB
Formato
Adobe PDF
|
689.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.