During Solar Cycle 24, the passive spherical satellites LARES and Ajisai, placed in nearly circular orbits with mean geodetic altitudes between 1450 and 1500 km, were used as powerful tools to probe the neutral atmosphere density and the performances of six thermospheric models in orbital regimes for which the role of dominant atomic species is contended by hydrogen and helium, and accurate satellite measurements are scarce. The starting point of the analysis was the accurate determination of the secular semi-major axis decay rate and the corresponding neutral drag acceleration in a satellite centered orbital system. Then, for each satellite, thermospheric model and solar activity level, the drag coefficients capable of reproducing the orbital decay observed were found. These coefficients were finally compared with the physical drag coefficients computed for both satellites in order to assess the biases affecting the thermospheric density models. None of them could be considered unconditionally the best; the specific outcome depending on solar activity and the regions of the atmosphere crossed by the satellites. During solar maximum conditions, an additional density bias linked to the satellite orbit inclination was detected.

Sounding the atmospheric density at the altitude of LARES and AJISAI during solar cycle 24

Pardini C;Anselmo L;Lucchesi D;
2021

Abstract

During Solar Cycle 24, the passive spherical satellites LARES and Ajisai, placed in nearly circular orbits with mean geodetic altitudes between 1450 and 1500 km, were used as powerful tools to probe the neutral atmosphere density and the performances of six thermospheric models in orbital regimes for which the role of dominant atomic species is contended by hydrogen and helium, and accurate satellite measurements are scarce. The starting point of the analysis was the accurate determination of the secular semi-major axis decay rate and the corresponding neutral drag acceleration in a satellite centered orbital system. Then, for each satellite, thermospheric model and solar activity level, the drag coefficients capable of reproducing the orbital decay observed were found. These coefficients were finally compared with the physical drag coefficients computed for both satellites in order to assess the biases affecting the thermospheric density models. None of them could be considered unconditionally the best; the specific outcome depending on solar activity and the regions of the atmosphere crossed by the satellites. During solar maximum conditions, an additional density bias linked to the satellite orbit inclination was detected.
2021
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Neutral Drag
Thermospheric Density Models
Solar Cycle 24
LARES
Ajisai
File in questo prodotto:
File Dimensione Formato  
prod_453984-doc_174798.pdf

accesso aperto

Descrizione: Articolo Pubblicato Open Access
Tipologia: Versione Editoriale (PDF)
Dimensione 11.29 MB
Formato Adobe PDF
11.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/398781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact