This study evaluated if specific light quality (LQ) regimes (white fluorescent, FL; full-spectrum, FS; red-blue, RB) during plant growth modified morphological and photosynthetic traits of Solanum lycopersicum L. 'Microtom' plants irradiated at the dry seed stage with 25 Gy 48Ca ions (IR). The irradiation reduced plant size while it increased leaf dry matter content (LDMC) and rela- tive water content (RWC) than control. FS and RB light regimes determined a decrease of plant height and a rise of RWC compared to FL plants. The irradiation under FS, and RB regimes favoured the development of dwarf plants and improved the leaf water status. Under the FL regime, irradi- ated plants showed reduced photosynthesis and stomatal conductance. The opposite behavior was observed in RB irradiated plants in which gas exchanges were significantly stimulated. RB regime enhanced Rubisco expression in irradiated plants also inducing anatomical and functional adjust- ments (i.e., increase of leaf thickness and incidence of intercellular spaces). Finally, 48Ca ions did notprevent fruit ripening and the achievement of the 'seed-to seed' cycle, irrespective of the LQ regime. Overall, the present study evidenced that RB light regime was the most effective in optimising growth and photosynthetic efficiency of 'Microtom' irradiated plants. These outcomes may help to develop proper cultivation protocols for the growth of dwarf tomato in Controlled Ecological Life Support Systems (CELSS).

Light spectral composition influences structural and eco-physiological traits of Solanum lycopersicum L. cv. 'Microtom' in response to high-LET ionizing radiation

Luca Vitale;
2021

Abstract

This study evaluated if specific light quality (LQ) regimes (white fluorescent, FL; full-spectrum, FS; red-blue, RB) during plant growth modified morphological and photosynthetic traits of Solanum lycopersicum L. 'Microtom' plants irradiated at the dry seed stage with 25 Gy 48Ca ions (IR). The irradiation reduced plant size while it increased leaf dry matter content (LDMC) and rela- tive water content (RWC) than control. FS and RB light regimes determined a decrease of plant height and a rise of RWC compared to FL plants. The irradiation under FS, and RB regimes favoured the development of dwarf plants and improved the leaf water status. Under the FL regime, irradi- ated plants showed reduced photosynthesis and stomatal conductance. The opposite behavior was observed in RB irradiated plants in which gas exchanges were significantly stimulated. RB regime enhanced Rubisco expression in irradiated plants also inducing anatomical and functional adjust- ments (i.e., increase of leaf thickness and incidence of intercellular spaces). Finally, 48Ca ions did notprevent fruit ripening and the achievement of the 'seed-to seed' cycle, irrespective of the LQ regime. Overall, the present study evidenced that RB light regime was the most effective in optimising growth and photosynthetic efficiency of 'Microtom' irradiated plants. These outcomes may help to develop proper cultivation protocols for the growth of dwarf tomato in Controlled Ecological Life Support Systems (CELSS).
2021
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
indoor cultivation
heavy ions
light quality
photosynthesis
Rubisco expression
File in questo prodotto:
File Dimensione Formato  
prod_455955-doc_176412.pdf

accesso aperto

Descrizione: Vitale et al._2021
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/398839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact